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ABSTRACT Temperature fluctuations in legal metrology laboratories can affect measurement accuracy and 

instrument stability. This study aims to analyse and optimize the factors influencing temperature 

fluctuations, namely AC temperature, time duration, and lighting, using the Taguchi method with 

an L9(3³) orthogonal array. The experiment was conducted with three variable levels for each factor, 

and the results were analysed using the Signal-to-Noise (SN) ratio and Analysis of Variance 

(ANOVA). The findings indicate that time duration has the most significant impact on temperature 

fluctuation, followed by lighting, while AC temperature has a smaller effect. Although ANOVA 

analysis shows that none of the factors are statistically significant on the SN ratio, strong interaction 

effects were observed, particularly between AC temperature and time duration, as well as AC 

temperature and lighting. The optimal combination to minimize temperature fluctuations is selecting 

a longer time duration and lower lighting intensity. This study concludes that better control of time 

duration and lighting can improve laboratory temperature stability, contributing to enhanced 

measurement accuracy and energy efficiency. These findings can serve as a basis for managing 

metrology laboratory environments to ensure more precise and reliable measurement results. 
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INTRODUCTION 

The primary function of legal metrology laboratories is to ensure that measurements remain 

precise and accurate, while also serving as a controlled storage environment for standard metrology 

instruments. Consequently, environmental conditions such as temperature and humidity must be 

carefully regulated. According to data from (Kementerian Perdagangan Republik Indonesia, 2024), the 

quality of legal metrology laboratories has shown a declining trend since 2020, with 1,692 laboratories 

meeting quality standards in 2020, 1,680 in 2021, 1,655 in 2022, and 1,588 in 2023. Fluctuations in 

temperature and humidity within metrology laboratories lead to suboptimal environmental control, 

which, if left unaddressed, can negatively impact measurement accuracy and precision. According to 

the Organisation Internationale de Métrologie Légale (OIML), permissible temperature fluctuations in 

metrology laboratories should not exceed ±0.7°C per hour. However, the specific variations in 

standardized control variables remain unidentified, posing a challenge in maintaining optimal 

conditions. 

Research in digital metrology plays a crucial role in enhancing the reliability, efficiency, and 

transparency of measurement processes across various industrial and economic sectors. The 

digitalization of metrology, including the development of electronic infrastructure, Digital Calibration 

Certificates (DCC), and cloud-based metrological systems, contributes to eliminating barriers in the 



International Conference on Engineering Design and Environmental Sustainability (ICEDES) 2025 

2  

digital transformation of the global economy (Karthiyayini & Rajendran, 2021). Moreover, accurate and 

traceable measurements not only foster trust among manufacturers, consumers, and regulators but also 

support international trade through the harmonization of standards and the reduction of technical barriers 

(Rodrigues Filho & Gonçalves, 2015). In the context of the energy transition, the development of 

metrological systems for hydrogen is also a critical factor in ensuring measurement accuracy in the trade 

of more environmentally friendly gases. Therefore, research in this field impacts not only technological 

and economic advancements but also consumer protection, industrial efficiency, and environmental 

sustainability. 

The digitalization of metrology, including the development of electronic metrology infrastructure, 

Digital Calibration Certificates (DCC), and cloud-based systems, facilitates enhanced transparency, 

security, and efficiency in measurement processes (Neyezhmakov et al., 2022). Furthermore, the 

integration of digital technologies in metrology supports the harmonization of global measurement 

standards, thereby impacting international trade, technological innovation, and the reduction of technical 

barriers (Oppermann et al., 2022). A structured calibration-certification-validation framework using a 

wet drum meter is applied in hydrogen metrology (Bonacina et al., 2022). This framework addresses 

measurement accuracy but requires further validation, scalability assessment, and long-term stability 

analysis. Despite challenges, it contributes to standardization efforts, supporting precise and reliable 

hydrogen volume and flow measurement in legal metrology. 

To improve the accuracy of hydrogen refilling by integrating experimental and computational 

methods a hybrid metrology evaluation system is used (Kim et al., 2024). This system supports standard 

calibration, which encourages the adoption of fuel cells. In addition, research on thermal mass gas flow 

meters emphasizes measurement time rather than volume, which proposes an optimized calibration 

procedure to improve accuracy and efficiency in gas flow metrology (Cascetta et al., 2016). 

Interoperability in dimensional metrology, proposing enhancements to STEP standards for seamless 

data exchange (Zhao et al., 2011). A systematic review highlights legal metrology’s role in trade and 

consumer protection, identifying regulatory gaps (Rodrigues Filho & Gonçalves, 2015). Additionally, 

computational modelling in precision engineering underscores the need for software certification to 

ensure reliable metrological computations and manufacturing quality (Linares et al., 2018).  

Effective control in legal metrology laboratories is crucial for maintaining measurement accuracy, 

regulatory compliance, and consumer confidence. Strengthening control mechanisms ensures 

traceability, enhances the reliability of calibration procedures, and supports the integrity of metrological 

data essential for industrial applications and global trade. Therefore, a method is needed to optimize 

control. One of the methods used for control optimization is the Taguchi method. To address this issue, 

it is crucial to identify all factors influencing quality characteristics and determine optimal factor levels 

to minimize variance. An experimental study is necessary to evaluate the key factors affecting 

temperature and humidity fluctuations and establish effective control measures for optimal 

standardization.  
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Several studies have employed the Taguchi method for engineering optimization. In the 

machining of Inconel 718, Taguchi + GRA + ANOVA was utilized to optimize cutting speed, feed rate, 

and depth of cut, resulting in a 64.8% increase in MRR and a 9.52% reduction in Ra (Maiyar et al., 

2013). Meanwhile, the optimization of Halbach array rotors applied Taguchi + FEM to minimize weight 

and enhance magnetic flux density (Yu et al., 2018). In diesel engines, the Taguchi-GRA method 

optimizes fuel type, load, and injection pressure, resulting in a 33.26% increase in thermal efficiency, a 

reduction in BSFC to 0.206 kg/kWh, and lower exhaust emissions (Bylapudi et al., 2024). In hydraulic 

pumps, the Taguchi-L8 method compares spur and elliptical gears, demonstrating that the elliptical gear 

pump achieves a 120% higher flow rate, 87% improved pressure performance, and 145% lower energy 

consumption (Yanikören, 2025). Taguchi and PSO designs optimize injection moulding, reducing 

warpage and increasing efficiency (Zhang et al., 2025). The integration of Lean and Taguchi in food 

processing minimizes variability and improves quality (Noorwali, 2013). Taguchi's method also 

improves AWJ machining by fine-tuning feed rates and abrasive flow to get better material removal and 

surface roughness with fewer tests (Radomska-Zalas & Puzio, 2024). These studies demonstrate that the 

Taguchi method significantly reduces the number of experiments required while still achieving efficient 

and reliable parameter optimization. 

The Taguchi method is applied in this study to enhance quality by reducing variation at the earliest 

stages of design, ensuring a more stable and controlled laboratory environment. Utilizing an L9(3³) 

orthogonal array, this approach systematically evaluates the impact of three factors AC temperature, 

time duration, and lighting each tested at three levels across nine experimental runs. By independently 

analyzing these factors, the method effectively identifies optimal conditions to minimize defects and 

improve laboratory performance. The primary response variable, temperature fluctuation, is assessed 

using the "smaller is better" quality characteristic, aiming to enhance measurement accuracy and energy 

efficiency in legal metrology laboratories. 

The novelty of this study lies in the optimization of temperature fluctuation control in legal 

metrology laboratories using the Taguchi method, specifically an L9(3³) orthogonal array. Unlike 

previous studies that focus on general environmental stability, this research identifies time duration and 

lighting as the most significant factors affecting temperature fluctuations, rather than AC temperature. 

Moreover, the study reveals strong interaction effects between AC temperature and other variables, 

contributing new insights into environmental control strategies for metrology laboratories. These 

findings provide a quantitative basis for optimizing laboratory conditions, enhancing measurement 

accuracy and energy efficiency. 

METHOD 

The Taguchi method is an exploratory quality control approach designed to reduce high 

variability, offering a flexible and simplified optimization process through the use of an orthogonal 

array. This method aims to minimize defects and enhance overall performance. Data analysis in this 
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study was conducted using Minitab software version 22.  

Figure 1 presents a systematic diagram of the Taguchi experiment for optimizing temperature 

fluctuation control in a legal metrology laboratory. The process begins with the identification of control 

factors, where key variables influencing laboratory conditions, such as the timer, lighting, and AC 

temperature, are determined. Once these factors are identified, the experimental design phase is 

conducted to establish parameter variations aimed at finding the optimal combination for maintaining 

temperature stability. Subsequently, the experiment is carried out in the experiment execution phase, 

where the pre-designed conditions are tested in the laboratory. The collected data is then analyzed in the 

data analysis phase using statistical approaches to evaluate the effects of each factor on the desired 

outcome. Finally, result optimization is performed, utilizing the analyzed data to determine the most 

effective configuration for maintaining stable temperature conditions. This diagram provides a clear 

visual representation of the experimental workflow, facilitating an understanding of the optimization 

steps undertaken to enhance accuracy and efficiency in legal metrology. 

 
 

Figure 1. A sytematic research diagram  

 

Material 

The research was conducted at the Indonesian government legal metrology laboratories in 

February 2025. The study utilized temperature measuring devices as the primary research objects, as 

shown in Figure 2, while monitoring equipment, including an Internet of Things (IoT) control device, 

was used for data collection and analysis, as shown in Figure 3.  
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Figure 2. Temperature measuring devices                         Figure 3. IOT Control devices 

 

Variable Experiment 

In experimental designs, independent variables that can be controlled are referred to as control 

factors, while the dependent variable, which results from the influence of these factors, is called the 

response. The selection of control factors and response variables in this experiment is based on Table 1. 

Table 1. Control factors and response 

No Faktor Kontrol 
Level Faktor Response 

1 2 3 (˚C / hour) 

1 AC Temperature  (X1) 16˚C 17˚C 18˚C 

Y1-4 2 Time Duration     (X2) 15‵ 22,5‵ 30‵ 

3 Lighting               (X3) 50% 75 % 100 % 

Where, Y1-4 = Fourth replication of response temperature fluctuation. 

Design Of Experiment 

The Taguchi method is used to predict the optimal value by conducting a varied number of 

experiments. The Orthogonal Array (OA) is a structured arrangement of numbers in rows and columns, 

where columns represent the experimental parameters, and rows define the variations or factor levels. 

In this study, the independent variables include air conditioning temperature, time duration, and lighting, 

while the response variable is temperature fluctuation. The L9(3³) Orthogonal Array is applied, where L 

represents the design width (Large), 9 denotes the number of experimental runs, and 3³ indicates three 

control factors, each with three levels, as shown in Table 2. 

Table 2. Orthogonal Array L9(33)  

Eks 

Control Factors 

X1 

(˚C) 

X2 

(minutes) 

X3 

(%) 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2 
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RESULTS AND DISCUSSION  

Table 3. Taguchi Experiment Result  

No. 

Factors 

Temperature fluctuation 

(˚C / hour) 
AC 

Temperature  

(X1) 

Time 

Duration     

(X2) 

Lighting               

(X3) 

(˚C) (Minute) (%) Y1 Y2 Y3 Y4 Y bar 

1 16 15,0 50 0,6 0,58 0,6 0,60 0,60 

2 16 22,5 75 0,27 0,33 0,44 0,33 0,34 

3 16 30,0 100 1,2 1 1,33 1,00 1,13 

4 17 15,0 75 0,53 0,55 0,6 0,53 0,55 

5 17 22,5 100 1,33 1,45 1,2 1,33 1,33 

6 17 30,0 50 1 1,2 1 1,00 1,05 

7 18 15,0 100 0,4 0,48 0,6 0,60 0,52 

8 18 22,5 50 0,8 0,96 0,88 0,80 0,86 

9 18 30,0 75 1 1,12 0,97 1,12 1,05 

 

Table 3 presents the results of a Taguchi experiment designed to evaluate the effects of three 

factors on temperature fluctuation (°C/hour). The investigated factors include AC temperature (X₁) in 

degrees Celsius, time duration (X₂) in minutes, and lighting (X₃) in percentage. Each experimental 

condition was tested in four replications (Y₁, Y₂, Y₃, Y₄), with the average value (Y bar) representing 

the mean temperature fluctuation across the replications. The table comprises nine experimental runs, 

each representing a unique combination of the three factors. For instance, in the first experiment, with 

an AC temperature of 16°C, a time duration of 15 minutes, and lighting set at 50%, the recorded 

temperature fluctuation ranged from 0.58 to 0.60°C/hour, with an average of 0.60°C/hour. In contrast, 

the third experiment, conducted at the same AC temperature but with an increased time duration of 30 

minutes and maximum lighting (100%), exhibited a higher mean temperature fluctuation of 

1.13°C/hour. 

Overall, the results indicate that variations in AC temperature, time duration, and lighting 

significantly influence temperature fluctuation. Experimental conditions involving a higher AC 

temperature (18°C) and increased lighting intensity (100%) tend to amplify temperature fluctuation, as 

observed in experiment 7 (0.52°C/hour on average) and experiment 9 (1.05°C/hour on average). 

Conversely, conditions with lower AC temperatures (16°C) and moderate lighting (75%) result in more 

stable temperature fluctuations, as demonstrated in experiment 2 with an average of 0.34°C/hour. 

These findings provide valuable insights into optimizing environmental conditions to minimize 

temperature fluctuations, offering practical implications for system stability and energy efficiency. 

Table 4. Analysis of Variance for SN ratios 

Source DF Seq SS Adj SS Adj MS F P 

AC Temperature 2 17,97 17,97 8,987 0,63 0,613 

Time Duration 2 50,19 50,19 25,097 1,76 0,362 

Lighting 2 25,09 25,09 12,544 0,88 0,532 

Residual Error 2 28,50 28,50 14,252   

Total 8 121,76     
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Table 4 presents the Analysis of Variance (ANOVA) for SN Ratios, evaluating the effects of 

three experimental factors AC Temperature, Time Duration, and Lighting on the observed response. 

ANOVA is employed to determine whether these factors have a significant effect on the variability of 

the SN ratio in the experiment. In this table, the Degrees of Freedom (DF) represent the number of 

independent categories for each factor. Each factor has DF = 2, while the Residual Error also has DF = 

2, resulting in a total DF of 8 for the experiment. The Sequential Sum of Squares (Seq SS) and Adjusted 

Sum of Squares (Adj SS) indicate the contribution of each factor to the total variability. Among these, 

Time Duration exhibits the highest contribution (Seq SS = 50.19), followed by Lighting (25.09) and AC 

Temperature (17.97). 

The Adjusted Mean Square (Adj MS) is obtained by dividing the Adj SS by the corresponding 

DF. The F-value is calculated by comparing the Adj MS of each factor to the Adj MS of the residual 

error. A higher F-value suggests a stronger effect of the factor. According to the table, Time Duration 

has the highest F-value (1.76), followed by Lighting (0.88) and AC Temperature (0.63). The P-value is 

used to assess statistical significance. Typically, if P < 0.05, the factor is considered to have a significant 

effect on the response. In this analysis, all P-values exceed 0.05 (AC Temperature = 0.613, Time 

Duration = 0.362, Lighting = 0.532), indicating that none of the factors have a statistically significant 

impact on the SN ratio. 

To interpret the significance of the factors, the F-calculated values are compared against the F-

table value at α = 0.05, with DF for the factor = 2 and DF for the error = 2. Based on the F-distribution, 

the F-table value (5%) for (2,2) is approximately 19.00. Since all F-calculated values are considerably 

lower than the F-table value (0.63, 1.76, and 0.88 < 19.00), the null hypothesis (H₀) cannot be rejected. 

This suggests that none of the factors have a significant effect in this experiment. Although Time 

Duration contributes the most to variability, none of the factors are statistically significant according to 

the ANOVA test. This indicates that variations in the SN ratio are likely influenced by other uncontrolled 

factors or noise within the system. 

Table 5. Response Table for Signal to Noise Ratios 

Smaller is better 

Level 
AC 

Temperature 

Time 

Duration 
Lighting 

1 4,1771 5,0721 1,7799 

2 0,7362 2,6579 4,6162 

3 2,1291 -0,6876 0,6463 

Delta 3,4409 5,7597 3,9698 

Rank 3 1 2 

 

Table 5 presents the Response for Signal-to-Noise Ratios (SNR) provides an analysis of the 

effects of three experimental factors AC Temperature, Time Duration, and Lighting on the system’s 

response, using the "Smaller is Better" criterion. This criterion is typically applied when the goal is to 

minimize variability or undesirable effects in the system. The table presents the SNR values for each 

factor at three different levels. For AC Temperature, the SNR values are 4.1771 (Level 1), 0.7362 (Level 
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2), and 2.1291 (Level 3). For Time Duration, the values are 5.0721 (Level 1), 2.6579 (Level 2), and -

0.6876 (Level 3). For Lighting, the values are 1.7799 (Level 1), 4.6162 (Level 2), and 0.6463 (Level 3). 

The Delta values, which represent the difference between the highest and lowest SNR for each factor, 

indicate the impact of each factor on the response. Time Duration has the highest Delta value (5.7597), 

followed by Lighting (3.9698) and AC Temperature (3.4409). This ranking suggests that Time Duration 

is the most influential factor, as indicated by its Rank 1, followed by Lighting (Rank 2) and AC 

Temperature (Rank 3). 

Since "Smaller is Better" is the selected criterion, lower SNR values indicate better performance 

in minimizing variability. The results imply that Time Duration has the greatest effect on response 

variation, meaning that precise control of this factor is crucial for achieving stable performance. 

Meanwhile, Lighting also plays a significant role, whereas AC Temperature has the least impact on the 

response. This response table suggests that Time Duration should be prioritized in process optimization, 

followed by Lighting, while AC Temperature has a relatively lower impact. These findings are essential 

for determining optimal factor settings to minimize unwanted variation and improve overall system 

performance. 

 
Figure 4. Main effects plot for SN ratios 

 

The Main Effects Plot for SN Ratios illustrates the impact of three experimental factors AC 

Temperature, Time Duration, and Lighting—on the response variable based on their mean Signal-to-

Noise (SN) ratios. The analysis follows the "Smaller is Better" criterion, indicating that lower SN ratio 

values are preferable for achieving optimal performance. The plot shows that Time Duration has the 

most significant effect, as indicated by the steepest slope, meaning that changes in time duration lead to 

the largest variation in SN ratios. The SN ratio is highest at Level 1 of Time Duration and decreases 
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sharply at Level 2 before reaching its lowest point at Level 3, suggesting that Level 3 is the optimal 

setting. Lighting also plays a considerable role, as the SN ratio fluctuates significantly across levels, 

with Level 3 appearing to be the most favorable. In contrast, AC Temperature has the least impact, as 

its SN ratio changes are more moderate compared to the other two factors.  

The trends indicate that Level 1 of AC Temperature, Level 3 of Time Duration, and Level 3 of 

Lighting are the most favorable settings to achieve minimal SN ratios. Overall, this plot provides 

valuable insights into the relative importance of each factor, confirming that Time Duration is the most 

influential parameter, followed by Lighting, while AC Temperature has a relatively lower impact. These 

findings suggest that optimizing Time Duration and Lighting is crucial in minimizing unwanted 

variation and improving system stability. 

 
 

Figure 5. Interaction plot for temperatur 1 

 

Figure 5 presents the interaction effects between three experimental factors: AC Temperature, 

Time Duration, and Lighting on the response variable T1. The plot consists of three subplots, each 

representing the interaction between two factors: AC Temperature × Time Duration, AC Temperature 

× Lighting, and Time Duration × Lighting. Interaction effects are evident when the lines in the plots are 

non-parallel or intersect, indicating that the influence of one factor on T1 depends on the level of the 

other factor. In the AC Temperature × Time Duration plot, significant interaction is observed as the lines 

cross, particularly at Time Duration Level 2.0, where the response peaks at AC Temperature Level 2. 

This suggests that the effect of AC Temperature on T1 is not consistent across different levels of Time 

Duration. Similarly, in the AC Temperature × Lighting plot, Lighting Level 3.0 exhibits a sharp increase 

at AC Temperature Level 2, followed by a decrease at Level 3, further indicating an interaction effect. 
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This pattern suggests that the impact of AC Temperature is influenced by different Lighting conditions. 

The Time Duration × Lighting plot also shows non-parallel trends, confirming interaction 

effects between these two factors. The most noticeable interaction occurs at Lighting Level 3.0, where 

the response variable T1 reaches its peak at Time Duration Level 2 and decreases sharply at Level 3. 

This indicates that the effect of Time Duration on T1 is not independent but varies depending on 

Lighting conditions. The presence of strong interaction effects in these plots highlights that T1 is not 

solely influenced by individual factors but also by their interactions. Among the observed interactions, 

the most significant effect appears between AC Temperature and Time Duration, as indicated by the 

considerable fluctuations in response values. These findings underscore the importance of considering 

interaction effects in experimental optimization, as ignoring them may lead to incorrect conclusions 

about the influence of each factor. 

 
Figure 6. Interaction plot for temperature 2 

 

Figure 6 illustrates the interaction effects between three experimental factors: AC Temperature, 

Time Duration, and Lighting on the response T2. This graph consists of three subplots, each depicting 

the interaction relationship between two factors: AC Temperature × Time Duration, AC Temperature × 

Lighting, and Time Duration × Lighting. The presence of interactions between these factors is indicated 

by non-parallel or intersecting lines, suggesting that the effect of one factor on T2 depends on the level 

of the other factor. 

In the AC Temperature × Time Duration plot, it is observed that for Time Duration Level 2, 

there is a sharp increase in T2 at AC Temperature Level 2, while for Time Duration Levels 1 and 3, the 

changes in T2 remain relatively stable. This pattern indicates that Time Duration Level 2 has a 

significant influence on T2, but this effect is not consistent across all levels of AC Temperature. 
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Meanwhile, in the AC Temperature × Lighting plot, the interaction between these two factors is quite 

evident as the lines exhibit opposite trends. At Lighting Level 3, there is a sharp increase at AC 

Temperature Level 2, followed by a decrease at Level 3. Conversely, at Lighting Level 2, a different 

pattern emerges with a peak at AC Temperature Level 3. This suggests that the effect of AC Temperature 

on T2 is strongly influenced by lighting conditions. 

In the Time Duration × Lighting plot, a clear interaction is observed at Lighting Level 3, where 

T2 increases significantly at Time Duration Level 2 and then decreases at Level 3. In contrast, at 

Lighting Level 2, there is a sharp decline at Time Duration Level 2, which differs from the other Lighting 

levels. These varying patterns confirm the interaction between Time Duration and Lighting, where the 

effect of each factor is not independent but is influenced by the level of the other factor. 

The most significant interactions appear to occur in the AC Temperature × Time Duration and 

AC Temperature × Lighting combinations, where the differences in T2 values are substantial and the 

variation across levels is inconsistent. These results indicate that optimizing parameters to achieve the 

best T2 value must consider interaction effects between factors, rather than focusing solely on their 

individual effects. 

 
Figure 7. Interaction plot for temperature 3 

 

Figure 7 presents the interaction effects of three experimental factors: AC Temperature, Time 

Duration, and Lighting on the response T3. This plot consists of three subplots, each illustrating the 

interaction between two factors: AC Temperature × Time Duration, AC Temperature × Lighting, and 

Time Duration × Lighting. The presence of interaction effects is indicated by non-parallel or intersecting 

lines, which suggest that the effect of one factor on T3 depends on the level of the other factor. In the 

AC Temperature × Time Duration plot, the trend for Time Duration Level 1 remains stable across 
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different AC Temperature levels. However, for Time Duration Levels 2 and 3, there is a significant 

fluctuation. Time Duration Level 3 starts at a high T3 value and then decreases as AC Temperature 

increases, whereas Time Duration Level 2 exhibits a sharp increase at AC Temperature Level 2 before 

decreasing again at Level 3. These variations suggest a strong interaction effect, where the influence of 

Time Duration on T3 is not consistent across different AC Temperature levels. 

The AC Temperature × Lighting plot shows a clear interaction effect. For Lighting Level 3, 

there is a peak at AC Temperature Level 2, followed by a decline at Level 3. Conversely, Lighting Level 

2 has a different trend, showing an increasing pattern at AC Temperature Level 3. This indicates that 

the effect of AC Temperature on T3 is strongly dependent on the lighting conditions, suggesting that 

different lighting levels result in different responses for the same AC Temperature levels. In the Time 

Duration × Lighting plot, an interaction effect is evident as the trends for different lighting levels differ 

significantly. Lighting Level 3 shows a sharp increase in T3 at Time Duration Level 2, while Lighting 

Level 2 exhibits a contrasting trend with a decrease at Time Duration Level 2 before increasing at Level 

3. The differences in these trends confirm that the relationship between Time Duration and T3 is affected 

by Lighting conditions. 

The strongest interaction effects are observed in the AC Temperature × Time Duration and AC 

Temperature × Lighting plots, where non-parallel trends suggest a significant dependency between these 

factors. This analysis highlights that optimizing T3 requires considering the combined effects of 

multiple factors rather than treating them independently. 

 
Figure 8. Interaction plot for temperature 4 

 

Figure 7 illustrates the interaction effects between three experimental factors: AC Temperature, 

Time Duration, and Lighting on the response T4. The plot contains three subplots, each representing the 

interaction between two factors: AC Temperature × Time Duration, AC Temperature × Lighting, and 
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Time Duration × Lighting. Interaction effects are identified by non-parallel lines, which indicate that 

the effect of one factor on T4 depends on the level of another factor. 

In the AC Temperature × Time Duration plot, the response for Time Duration Level 1 remains 

relatively stable across different AC Temperature levels. However, for Time Duration Level 2, there is 

a sharp increase at AC Temperature Level 2, followed by a decrease at Level 3. Time Duration Level 3, 

on the other hand, starts high at AC Temperature Level 1, remains stable at Level 2, and increases 

slightly at Level 3. These variations suggest a strong interaction effect, where the influence of Time 

Duration on T4 is inconsistent across different AC Temperature levels.  

The AC Temperature × Lighting plot shows a significant interaction effect, particularly for 

Lighting Level 3, where the response peaks at AC Temperature Level 2 and then decreases at Level 3. 

In contrast, Lighting Level 2 follows an increasing trend, reaching its highest value at AC Temperature 

Level 3. This indicates that the effect of AC Temperature on T4 is highly dependent on the lighting 

conditions, meaning that different lighting levels yield different responses at the same AC Temperature 

levels. The Time Duration × Lighting plot also shows noticeable interaction effects. Lighting Level 3 

exhibits a sharp increase in T4 at Time Duration Level 2, whereas Lighting Level 2 follows a different 

pattern, decreasing at Time Duration Level 2 before increasing at Level 3. The differences in these trends 

confirm that the relationship between Time Duration and T4 is influenced by Lighting conditions. 

Overall, the strongest interaction effects are seen in the AC Temperature × Time Duration and 

AC Temperature × Lighting plots, where non-parallel lines suggest that these factors do not act 

independently. This suggests that optimizing T4 requires a careful balance between AC Temperature, 

Time Duration, and Lighting to achieve the desired outcomes. 

CONCLUSION 

The experimental results indicate that time duration has the most significant impact on 

temperature fluctuation, followed by lighting, while AC temperature has a smaller influence. ANOVA 

analysis reveals that although these factors contribute to temperature variation, none of them have a 

statistically significant effect on the SN ratio. However, strong interaction effects were observed, 

particularly between AC temperature and time duration, as well as AC temperature and lighting. Based 

on the response analysis and main effects plot, the optimal combination to minimize temperature 

fluctuations is by selecting a longer time duration and lower lighting intensity, whereas AC temperature 

has a relatively smaller impact compared to the other two factors. Overall, this study demonstrates that 

better control of time duration and lighting can help maintain temperature stability in metrology 

laboratories, thereby improving measurement accuracy and energy efficiency. 

REFERENCES 

Bonacina, C. N., Tafani Alunno, P., Mastromatteo, M., Valenti, G., Serafini, G., Imboccioli, C., Russo, 

M., Soranno, C., Mori, L., & Lombardi, F. M. (2022). Proposal of a novel approach to reference 

instrument and procedure definition to measure hydrogen volume and volumetric flow in a legal 

metrology framework. Measurement: Journal of the International Measurement Confederation, 

203. https://doi.org/10.1016/j.measurement.2022.111882 



International Conference on Engineering Design and Environmental Sustainability (ICEDES) 2025 

14  

Bylapudi, B. A. K., Kambagowni, V. S., & Sagari, J. (2024). Effect of hybrid nanoparticles dispersed 

ternary fuel blend on diesel engine performance and emissions: Experimental and Taguchi-Grey 

relation study. International Journal of Thermofluids, 24. 

https://doi.org/10.1016/j.ijft.2024.100929 

Cascetta, F., Rotondo, G., Piccato, A., & Spazzini, P. G. (2016). Calibration procedures and uncertainty 

analysis for a thermal mass gas flowmeter of a new generation. Measurement: Journal of the 

International Measurement Confederation, 89, 280–287. 

https://doi.org/10.1016/j.measurement.2016.03.073 

Karthiyayini, N., & Rajendran, C. (2021). An approach for benchmarking service excellence in 

accredited services of Indian calibration and testing laboratories. Materials Today: Proceedings, 

46, 8218–8225. https://doi.org/10.1016/j.matpr.2021.03.216 

Kementerian Perdagangan Republik Indonesia. (2024). Laporan tahunan Direktorat Metrologi 2024: 

Tren kualitas laboratorium metrologi legal di Indonesia. 

Kim, J. H., Lee, H. young, & Lee, J. H. (2024). A study on metrological cross-validation of hydrogen 

refueling stations using a hybrid metrology evaluation system. Energy Reports, 11, 846–858. 

https://doi.org/10.1016/j.egyr.2023.12.043 

Linares, J. M., Goch, G., Forbes, A., Sprauel, J. M., Clément, A., Haertig, F., & Gao, W. (2018). 

Modelling and traceability for computationally-intensive precision engineering and metrology. 

CIRP Annals, 67(2), 815–838. https://doi.org/10.1016/j.cirp.2018.05.003 

Maiyar, L. M., Ramanujam, R., Venkatesan, K., & Jerald, J. (2013). Optimization of machining 

parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis. 

Procedia Engineering, 64, 1276–1282. https://doi.org/10.1016/j.proeng.2013.09.208 

Neyezhmakov, P., Zub, S., & Pivnenko, S. (2022). Preliminary e-infrastructure for digital metrology. 

Measurement: Sensors, 23. https://doi.org/10.1016/j.measen.2022.100398 

Noorwali, A. (2013). Apply lean and taguchi in different level of variability of food flow processing 

system. Procedia Engineering, 63, 728–734. https://doi.org/10.1016/j.proeng.2013.08.285 

Oppermann, A., Eickelberg, S., Exner, J., Bock, T., Bernien, M., Niepraschk, R., Heeren, W., Baer, O., 

& Brown, C. (2022). Digital Transformation in Metrology: Building a Metrological Service 

Ecosystem. Procedia Computer Science, 200, 308–317. 

https://doi.org/10.1016/j.procs.2022.01.229 

Radomska-Zalas, A., & Puzio, P. (2024). The application of the Taguchi method in the optimization of 

AWJ machining process. Procedia Computer Science, 246(C), 2812–2820. 

https://doi.org/10.1016/j.procs.2024.09.390 

Rodrigues Filho, B. A., & Gonçalves, R. F. (2015). Legal metrology, the economy and society: A 

systematic literature review. Measurement: Journal of the International Measurement 

Confederation, 69, 155–163. https://doi.org/10.1016/j.measurement.2015.03.028 

Yanikören, M. (2025). Experimental investigation of the performance and energy consumption 

efficiency of elliptical gear hydraulic pump and evaluation by Taguchi method. Engineering 

Science and Technology, an International Journal, 62. 

https://doi.org/10.1016/j.jestch.2024.101941 

Yu, R., Wu, Z., Wang, Y., & Li, H. (2018). Optimizing Performance Parameters of Halbach Array Rotor 

Based on Taguchi Algorithm. Procedia Computer Science, 154, 167–172. 

https://doi.org/10.1016/j.procs.2019.06.025 

Zhang, L., Chang, T. L., Tsao, C. C., Hsieh, K. C., & Hsu, C. Y. (2025). Analysis and optimization of 

injection molding process on warpage based on Taguchi design and PSO algorithm. International 

Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-025-15099-5 

Zhao, Y., Xu, X., Kramer, T., Proctor, F., & Horst, J. (2011). Dimensional metrology interoperability 

and standardization in manufacturing systems. Computer Standards and Interfaces, 33(6), 541–

555. https://doi.org/10.1016/j.csi.2011.02.009 

  

 


